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Abstract--A n analysis of the compatibility of Cattaneo-Vernotte's constitutive equation for the heat flux 
density vector with the hypothesis of local thermodynamic equilibrium is presented. This compatibility is 
checked by determining the entropy production rate per unit volume. In fact, within the scheme of local 
equilibrium, Clausius' inequality implies that the entropy production rate must be non-negative. The 
evaluation of the entropy production rate is performed for a solid slab which experiences a sudden change 
of the boundary temperature and for a semi-infinite solid with a time-varying boundary heat flux. A domain 
of non-stationary phenomena is found in which Cattaneo-Vernotte's equation is compatible with the 
assumption of local equilibrium and yields results definitely different from those predicted by Fourier's 

equation. Copyright © 1996 Elsevier Science Ltd. 

IINTRODUCTION 

Two constitutive equations are used, nowadays, in the 
analysis of conduction heat transfer. The first, and 
most widely employed, is Fourier's law 

q = - k V T  (1) 

where q is the heat flux density vector, k is a positive 
scalar called thermal conductivity and T is the local 
equilibrium temperature. As it is well known, equation 
(1) yields a parabolic differential equation for the tem- 
perature field and, as a consequence, an infinite propa- 
gation speed of thermal signals. This feature appears 
as unsatisfactory. On the other hand, as it will be 
proved in next secti on, equation (1) is always perfectly 
compatible with the scheme of local equilibrium, 
because, within this scheme, it yields an expression of 
the local entropy production rate which can assume 
only positive values. 

To overcome the paradox of an infinite propagation 
speed of thermal signals, Cattaneo and Vernotte [1, 
2] have proposed a different constitutive equation for 
conduction heat transfer, namely 

0q 
q + z ~ = -- kV r (2) 

where z is a positive scalar called thermal relaxation 
time. 

Equation (2) yields a hyperbolic differential equa- 
tion for the temperature field and eliminates the para- 
dox of an infinite propagation speed of thermal 
signals. Obviously, equation (2) reduces to equation 
(1) for z = 0. Some experimental evidence in favour 
of equation (2), with respect to equation (1), is already 
available, especially at very low temperatures. For 

instance, the propagation speed of thermal signals has 
been measured in liquid helium [3], in NaF at about 
10 K [4], in Bi at 3.4 K [5]. Recent measurements 
of the propagation speed of thermal signals at room 
temperatures, in unhomogeneous materials, have been 
performed by Kaminski [6]. According to this author, 
some unhomogeneous materials, such as sand and 
NaHCO3, have relaxation times of about 20 s. 

These experiments seem to suggest that equation 
(1) is only an approximation of equation (2), valid 
when the product z(~q/Ot) is negligible. Many solu- 
tions of heat conduction problems based on equation 
(2) are available in the literature. An interesting review 
of these solutions is provided by t)zisik and Tzou [7]. 
However, deep problems arise when the ther- 
modynamic interpretation of the consequences of 
equation (2) is considered. In fact, if equation (2) 
is analysed within the framework of the traditional 
irreversible thermodynamics, which is based on the 
assumption of local equilibrium, then it yields an 
expression of the entropy production rate which can 
assume both positive and negative values. Since nega- 
tive values of the entropy production rate are in con- 
trast with Clausius' inequality, as it will be formally 
proved in the next section, some authors have con- 
ceived an extended framework of irreversible ther- 
modynamics, in which the assumption of local equi- 
librium is released. This framework, called extended 
irreversible thermodynamics, is built so that equation 
(2) yields an expression of the entropy production rate 
which can assume only positive values. However, a 
widely accepted theory of extended irreversible ther- 
modynamics, based on rigorous definitions, internally 
consistent and endowed with some experimental veri- 
fication, is not yet available. 

Indeed, different theories of extended irreversible 
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NOMENCLATURE 

dimensionless function of ~/defined in 
Appendix A 
dimensionless functions of r/defined in 
Appendix A 
thermodynamic system 

thermodynamic states of A 
dimensionless coefficients defined in 
Appendix A 
dimensionless coefficients defined in 
Appendix A 
specific heat at constant volume 
dimensionless function of time defined 
by equation (37) 
function of x and t defined in Appendix 
B 

modified Bessel function of first kind 
and order n 
thermal conductivity 
one half of the slab thickness 
inverse Laplace transform operator 
outward unit normal 
natural number 
Laplace transformed variable 
x-component of the heat flux density 
constant power per unit area 
heat flux density 
entropy per unit mass 
entropy per unit mass at equilibrium 
entropy 
time 
t3 instants of time 
time constant which determines the 
time scale of the pulse function F(t) 
temperature 
initial temperature 
boundary temperature 
energy per unit mass 
energy per unit mass at equilibrium 
fixed value of the energy per unit mass 
Heaviside's unit step function 
region of space 
boundary surface of V 
spatial coordinate 
position vector. 

Greek symbols 
ct = k/(pcv), thermal diffusivity 
fl dimensionless constant employed in 

Appendix A 
fin eigenvalues defined in Appendix A 
~n dimensionless constants defined in 

Appendix A 
6, dimensionless constants defined in 

Appendix A 
6 Dirac's delta distribution 
~Q infinitesimal heat quantity employed 

in equation (10) 
~/ dimensionless time defined by 

equation (25) 
dimensionless temperature defined by 
equation (25) 

0 nonequilibrium temperature defined 
by equation (7) 
function defined by equation (5) 

A dimensionless parameter defined by 
equation (25) 
dimensionless coordinate defined by 
equation (25) 

p mass density 
a entropy production rate per unit 

volume 
z thermal relaxation time 
tp dimensionless entropy production rate 

per unit volume defined by equation (25) 
~b dimensionless function of/ 'defined by 

equation (38) 
~b derivative of q~ with respect t o / '  
Z dimensionless heat flux density in the 

x-direction defined by equation (25) 
q~ Helmholtz free energy per unit mass 
~o Lagrange multiplier employed in 

equation (5). 

Superscripts 
Laplace transformed functions 

- dimensionless quantities defined by 
equation (38) 

' dummy integration variables. 

thermodynamics have been presented. A review of 
these theories can be found in refs. [8, 9]. Some 
theories of extended irreversible thermodynamics 
will be discussed here. 

Gurtin and Pipkin [10] propose a theory of 
extended irreversible thermodynamics which is based 
on the assumption that the specific Helmholtz free 
energy if, the specific entropy s and the heat flux vector 
q depend on temperature T, on the history of T and 
on the history of VT. No  definition of the specific 

nonequilibrium entropy s and of the nonequilibrium 
temperature Tis given. Moreover, no explicit form of 
the dependence of q/, s and q on Tand  on the histories 
of T and of  V T  is proposed. Therefore, this treatment 
of extended irreversible thermodynamics does not 
appear as an experimentally verifiable physical theory. 

Coleman et al. [11] present a treatment of extended 
irreversible thermodynamics the aim of which is to 
prove that equation (2) is compatible with the second 
law of  thermodynamics only if the specific internal 
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energy u does not depend only on T, but also on q. 
More precisely, the authors obtain expressions of u 
and s for a material at constant mass density. If  the 
material is isotropic and has constant values of  the 
thermal relaxation time and of  the thermal conduc- 
tivity, these expressions assume the form 

T 
u(T,  q) = u0 (T) + p ~ q "  q (3) 

T 
s(T,q) = s0(T)+ 2 p - ~ q "  q (4) 

where uo(T) is the specific internal energy at equi- 
librium and s0(T) is the specific entropy at equi- 
librium. It is easily proved that equations (3) and (4) 
are incompatible vdth the highest-entropy principle. 
For  a closed simple system at constant volume, this 
principle can be stated as follows [12]: among the 
states of  the system with a fixed value of energy, the 
entropy takes on its maximum value in the unique 
stable equilibrium state which corresponds to the 
given energy value. In order to check if equations 
(3) and (4) are compatible with the highest-entropy 
principle, one must verify that the function 

x(T,q, og) = s( T, q) + ~o[u( T, q) - ua] (5) 

where 09 is a Lagrange multiplier and u, is a fixed value 
of the specific internal energy, has a maximum at 
equilibrium, i.e. for q = 0. The partial derivatives of 
tc(T,q, og) are zero at equilibrium if ~ o = - 1 / T .  
However, if the equilibrium value of the specific heat 
at constant volume is independent of temperature, the 
Hessian matrix of  x ( T , q , ~ )  has one positive eig- 
envalue and four negative eigenvalues for q = 0 and 
o~ = - 1/ T. Therefi~re, the function x(  T, q, o~ ) has nei- 
ther a maximum nor a minimum at equilibrium, in 
contrast with the highest-entropy principle. As a 
consequence, equations (3) and (4) are incompatible 
with the laws of thermodynamics. Moreover, the ther- 
modynamic temperature T, in local nonequilibrium 
states, appears as uLndefined. 

A more consistent theory of extended irreversible 
thermodynamics is presented by Jou et al. [13]. The 
authors assume that, for the local nonequilibrium 
states of a medium with uniform and constant density, 
the specific entropy is a function of the specific internal 
energy and of the heat flux density vector, i.e. 

s = s(u, q). (6) 

Then, they define the nonequilibrium temperature O 
a s  

' 
= (7) 

and postulate that the entropy flux vector is given by 
q/® and that the local entropy production is positive. 
They prove that Cattaneo-Vernotte's constitutive 
equation, expressed in the form 

0q 
q + ~ - ~  = - k V O  (8) 

is compatible with the assumptions stated above. 
Moreover, they obtain the following explicit 
expression of equation (6) : 

T 
s(u, q) = So (u) - ~ q" q (9) 

where So(U) is the specific entropy at equilibrium, for 
the given value of u, and T is the equilibrium thermo- 
dynamic temperature, defined as T-1 = ds0/du. The 
compatibility of equation (8) with the assumptions 
made by Jou et at. [13] has been proved also by Tzou 
[141. 

The theory of extended irreversible thermo- 
dynamics proposed by Jou et al. [13] has no internal 
inconsistency. However, the theory is based on 
assumptions which cannot undergo a direct exper- 
imental verification. In fact, no definition of the non- 
equilibrium specific entropy is available in ther- 
modynamics. The entropy difference between two 
states A1 and A2 of any system A is defined as [15] 

S(A2)--S(AI)  = I A2 gO (10) 
L , Y  

where 6Q is the infinitesimal heat quantity that the 
system receives from a reservoir with temperature T 
and the integral must be evaluated along any revers- 
ible process of system A from A~ to A2. As is stated 
by Fermi [15], a reversible process of system A from 
A~ to A2 exists only if A 1 and A 2 a r e  either stable 
equilibrium states or local equilibrium states. In the 
second case, system A can be considered as a collection 
of infinite subsystems in stable equilibrium which can 
be brought reversibly, one by one, from their initial 
to their final state. Since the specific entropy of a 
system which is not in local stable equilibrium cannot 
be defined by means of equation (10), equation (9) 
cannot be considered as a verifiable result. 

A partial experimental verification of the theory 
proposed by Jou et al. [13] could be based on measure- 
ments of  the difference between ® and T. Although 
an experiment with this objective has been conceived 
by Jou and Casas-V~zquez [16], no experimental evi- 
dence supporting the theory proposed by Jou et al. 
[13] is still available. 

To summarize, some theories of extended irre- 
versible thermodynamics which disagree with each 
other have been presented. Some of these theories 
are internally inconsistent, others cannot be verified, 
others again can be partially verified, in principle, 
but still lack any experimental support. Therefore, it 
appears interesting to check if a domain exists, in 
which the constitutive equation (2) proposed by Cat- 
taneo and Vernotte can be interpreted within the usual 
framework of irreversible thermodynamics, which is 
based on the assumption of local equilibrium. The 
aim of this paper is to develop this analysis. It will 
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be proved that a domain exists, in heat conduction 
phenomena, in which equation (2) yields results that 
differ from those obtainable with equation (1) and a 
physical interpretation of the results within the scheme 
of local equilibrium is still possible. It will also be 
proved that, out of this domain, equation (2) becomes 
incompatible with the scheme of local equilibrium. 

MATHEMATICAL MODEL 

In this section, the mathematical description of 
hyperbolic heat conduction in solid media is outlined. 
Moreover, an expression of the entropy production 
rate a based on the local equilibrium hypothesis is 
determined and a proof that a must be non-negative 
is presented. 

If no heat generation is present within a solid and 
the mass density p is constant, the local energy balance 
equation can be expressed as 

V ' q + p ~ = O .  

If the local equilibrium hypothesis holds, any 
sufficiently small volume element of the solid can be 
considered in stable equilibrium at any instant of time. 
Moreover, the specific internal energy u depends only 
on T, so that du = Cv dT. Therefore, if the thermal 
conductivity k, the thermal diffusivity ct, the specific 
heat at constant volume cv and the thermal relaxation 
time z of the material are considered as constants, 
equations (2) and (11) yield both 

QT t32T 
~V2T = ~ -  + z  Ot ~ 

and 

~q , d2q 

~V(V'q) = ~S t~Tt~" 

Equation (12) allows a direct determination of the 
temperature field, while the heat flux density vector 
can be directly determined by equation (13). If  the 
temperature field is known, the heat flux density vector 
can be determined also by integrating equation (2) 
with respect to time, namely 

k (" t,-t 
q(x, t) = e ('-'o)/~ q(x, to) -- z - /  e ~ -  VT(x, t') dt'. 

, ) to 

The local entropy balance equation can be written as 

[ q \  Os 
V - t T J + p ~  = a. 

Since p = constant and the relation du = Tds holds 
locally, equations (11) and (15) yield the expression 
of the entropy production rate 

1 a = - ~ q "  VT. (16) 

On account of Clausius' inequality, the entropy pro- 
duction rate must be non-negative, as it will be proved 
in the following. Let us consider a portion of solid A 
contained in the volume V with boundary d V, such 
that in the time interval [t], t2] system A changes its 
thermodynamic state from A~ to A2. If n is the outward 
unit normal of c~ V, equation (15) yields 

I Vd2xdt+S(A2)-S(A, )= ad3xdt. 
I d O V  I 

(17) 

On the other hand, since A~ and A2 are local equi- 
librium states, it is possible to perform a reversible 
time evolution in the interval [t2, t3] which brings back 
system A to its initial state, A1 [15]. For  this second 
evolution, equation (15) yields 

(11) (It3 I q'ndzxdt~ +S(A1)-S(A2)=O. 
2 Joy T ] ...... ~b,~ 

(18) 

On account of equations (17) and (18), one obtains 

t2 q ' n  2 t3 q ' n  2 f, r - - d x d t + ( f  I - - d x d t ~  
Jav T \J,2 Jay T .1 . . . . . .  ibt¢ 

L = ad3xdt. (19) 
i 

(12) The left hand side of equation (19) can be expressed 
as a time integral over a cyclic time evolution of system 
A, which starts and ends at state A~. Therefore, equa- 
tion (19) can be rewritten as 

(13) f~,.A, fov-~d2xdt=f',2fvad3xdt. (20) 

Indeed, q'ndZxdt represents the opposite of the 
infinitesimal quantity of heat which enters system A 
through the surface element d 2x in a time interval with 
duration dt. Therefore, Clausius' inequality implies 
that the left hand side of equation (20) is non-negative, 
so that the right hand side of equation (20) is also 
non-negative. Since both the portion of solid A and 
the time interval [h, t2] have been chosen arbitrarily, 
the entropy production rate cr is non-negative at every 

(14) point and at every instant of time. 
It has been proved that the hypothesis of local equi- 

librium implies that cr is non-negative at every point 
and at every instant of time. Therefore, if a state of 
the solid medium is such that the entropy production (15) 
fails to be non-negative everywhere, one can conclude 
that the state under exam is not a local equilibrium 
state. 

On account of equations (2) and (16), the entropy 
production rate can be expressed as 
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¢( ',) 
a = q 'q+~q '~-7  " 

(21) 

Whenever the heat flux density q has a constant direc- 
tion and decreases at some point so steeply that 
laq/atl > Iql/z, the right hand side of equation (21) 
becomes negative and the local equilibrium scheme 
cannot be applied. If this circumstance occurs, the 
temperature field which can be evaluated by solving 
equation (12) cannot be endowed with its usual physi- 
cal meaning and equation (12) is incompatible with 
local equilibrium thermodynamics. 

ON 'I"AITEL'S PARADOX 

In this section, hyperbolic heat conduction in a 
parallel and infini~Lely wide slab which undergoes a 
sudden temperature change at its boundary is studied. 
The temperature field and the entropy production rate 
are determined. 

Let us consider heat conduction in an infinitely wide 
parallel slab with thickness 2L such that the thermal 
conductivity k, the thermal diffusivity a, the specific 
heat at constant vclume Cv and the thermal relaxation 
time z of the slab can be considered as constant. 
Throughout the slab, at time t = 0, the heat flux den- 
sity q is zero and the temperature field T is uniform 
with value To. As a consequence, also aT/at is zero 
at time t = 0, as can be easily proved by employing 
equation (11). For every t > 0, the temperature dis- 
tribution on the two sides of the slab is kept uniform 
with a value Tw 4= To. 

This problem has been analysed by Taitel [17] in 
the framework of hyperbolic heat conduction. Taitel 
obtains the transient temperature field and points out 
that the absolute value of the temperature change 
T - T o  may exceed ITw-T01. A thermodynamic 
interpretation of this paradoxical feature can be based 
on the evaluation of the entropy production rate. 
Since Taitel's method to determine the temperature 
field is rather involved and the mathematical 
expression of the temperature distribution is very 
complicated, a new solution of equation (12) can be 
obtained for this problem by a simple separation of 
variables. 

By considering an axial coordinate x orthogonal to 
the slab and such that the two sides of the slab are at 
positions x = - L  and x = L respectively, the gov- 
erning equations can be expressed as 

¢G2T aT a2T 
- + z - -  ( 2 2 )  

Ox 2 at at 2 

a~7 ,= o 
T(x, 0) = To, = 0 (23) 

T(--L, t > 0) = T(L, t > O) = 7",. (24) 

By introducing the dimensionless quantities 

x ctt Tw - T 2Lq 
~=2-L r l = ~  ~ 9 - T w - ~  9~ k (Tw-To)  

4L 2 T z ~'c 
t p - k ( T w _ T o )  2tr A = ~ L  S (25) 

equations (22)-(24) can be rewritten as 

020  Ot.q a2o  q 
- -  = - -  + A - -  ( 2 6 )  
a~ 2 &~1 Oq 2 

&9 = 0 (27) o(~,o) = t ~ . = 0  

O(-1/2,q>O)=oa(1/2,  q > O ) = O .  (28) 

In Appendix A, equations (26)-(28) are solved by a 
separation of variables and the dimensionless tem- 
perature is expressed as 

0(~, q) = ~ (b,e ~." + c,e a.") cos(fl,~). (29) 
n=0 

The eigenvalues ft, and the coefficients b,, c,, ~,, 6, are 
also evaluated in Appendix A. On account of equation 
(14) and of the initial condition q(x,O)=0,  one 
obtains 

q(x, t) = -- k I' e (r-/)/, dT(x, t') dt' (30) 
T Jo ax " 

Equations (25) and (30) yield 

1 ~'t  e (n'- 't)/a aoq(~, r / ' )  . , 
g({, n) = S J  ° a{ an" (31) 

By employing equations (29) and (31), one obtains 

e -'I1^ ~ fl,,~ b, [eC,.+,/n),l_l]+ 

_c. [e(a.+ l/A). _ 1]'~sin(fl.{). (32) 
5 .+  1/A J 

Moreover, equations (16) and (25) yield 

¢P(~, q) = Z(~, q)&9~ r/). (33) 

The dimensionless entropy production rate can be 
evaluated by equations (29), (32) and (33). Equation 
(33) ensures that, due to the symmetry of the problem, 
the dimensionless entropy production rate will always 
be zero at ~ = 0. 

Plots of (1-~q) and q~ vs ~ are reported in Fig. 1, 
for A = 1 and q = 0.7. These plots reveal that I T-- T01 
may exceed IT , -Tol  as pointed out by Taitel [17]. 
However, in the case examined, a negative entropy 
production rate is present at every point within the 
slab. As a consequence, the local equilibrium scheme 
cannot be employed in the case represented in Fig. 1. 
Therefore, T does not represent the thermodynamic 
temperature and no violation of the laws of ther- 
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Fig. 1. Plots of 1 - ~  = ( T -  T o ) / ( T , -  To) vs ~ and of q~ vs ~, 
for A = 1 and ~/= 0.7, obtained by employing equations 

(29), (32) and (33). 
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Fig. 2. Plots of 1 - ~ = ( T -  To)/(Tw- To) vs r/and of q~ vs ~/, 
for A = 1 and ~ = 0.25, obtained by employing equations 

(29), (32) and (33). 

duction rate is alternately positive and negative. This 
behaviour is quite different from that predicted in 
parabolic heat conduction and described, for instance, 
in Carslaw and Jaeger [18]. In fact, parabolic heat 
conduction predicts that (1 - ,9)  continuously 
increases from zero to one at any internal position ~. 

A SEMI-INFINITE SOLID WITH A PRESCRIBED 
BOUNDARY HEAT FLUX 

In this section, hyperbolic heat conduction in a 
semi-infinite solid with a time-varying boundary  heat 
flux is considered. The heat flux density, the entropy 
production rate per unit  volume and the temperature 
field are determined. 

Let us consider heat conduction in a semi-infinite 
solid bounded by a plane surface and such that the 
thermal conductivity k, the thermal diffusivity c~, the 
specific heat at constant  volume Cv and the thermal 
relaxation time f of  the material can be considered as 
constant. Let us denote by x the spatial coordinate 
along the axis orthogonal to the boundary  surface of 
the solid, directed inside the solid and such that x = 0 
represents the position of the boundary  surface. 
Throughout  the solid at time t = 0, the heat flux den- 
sity q is zero and the temperature field T is uniform 
with value To. As a consequence, also Oq/8t is zero 
at time t = 0, as can be easily proved by employing 
equation (2). For  t > 0, the x-component  of the heat 
flux density vector at the boundary  surface of the solid 
is given by q(0, t) = QF(t) ,  where F is a differentiable 
function of t such that F(0) = 0. On account of equa- 

~ tion (21), the entropy production rate at x = 0 is given 
by 

_ - 

Let us suppose that F(t)  behaves as a pulse which 
initially increases, reaches a maximum and then 
decreases without undergoing sign changes. Equation 
(34) ensures that a(0, t) can become negative if F(t)  

decreases faster than e-'/~. 
The heat flux density component  along the direction 

x can be determined by solving equation (13) with its 
boundary and initial conditions 

modynamics occurs. Incidentally, let us note that at 
the positions where the temperature field is dis- 
continuous the entropy production rate presents 
Dirac-delta singularities, as can be inferred from equa- 
tion (33). These singularities have not  been rep- 
resented in Fig. 1. 

In Fig. 2, plots of (1--,9) and q~ vs r /are reported 
for A = 1 and ¢ = 0.25. These plots show that the 
equilibrium value for (1 -`9), i.e. one, is attained by an 
oscillatory process during which (1 -`9) is alternately 
greater and smaller than one and the entropy p r o -  

c~2q Oq ~2q 
+ ~ (35) 

OX 2 c~t Ot 2 

q(x,O) = 0 c~t t ,=0 = 0 (36) 

q(O, t > O) = QF(t ) .  (37) 

Equations (35)-(37) are solved in Appendix B by the 
Laplace transform method. If  one defines the dimen- 
sionless quantities 
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x t z q 1 
X : ~ / ~ v  / - = ~  f : t p  t T = ~  ~b(t-)=F(tpt-) 

0.8 
k T e T -  To 

# - - -  7 ~ = k (38) 0.6 
- a 2 a  Ow/~p ¢0 

the solution of equations (35)-(37) can be written in 0.4 
the dimensionless form 

0.2 
t-) = 

o 

[2~  f i- ~-r"(2e)'l't'F--/- '~ / 1 X 

+ ~ ( / - - x v / ~ ) e - ~ / ( 2 ~  ]. (39t 

Moreover, on account of equations (21) and (38), the 
dimensionless entropy production rate can be written 
a s  

On account of equations (39) and (40), both q()7, t3 

and ~'(~, t'} become non-zero only w h e n / - >  ~?,,~, i.e. 
when t > x , , / ~ .  This result is not  surprising since 
~ / ~  represents the propagation speed of thermal 
waves. 

At any instant of time, the limit of T(x ,  t) for x 
+ dO must be equal to To. Therefore, equation (2) 

implies that 

1 r +~[- , @(x', t)q 
r(x,  t) = r0 + L q(x' 

(41) 

On account of equations (38), (39) and (4]), one 
obtains 

;+oo F . . . . .  ao(x', 07 
:v(x, t3 = l_qtx,O+e jdx' 

1 r 
= ~ U(i---x,V/e) ~ f e-'-'/'="[,~(i ' - / -9 

J r  IJ,  

,1  

A similar expression of the temperature field in the 
case of a semi-infinite solid with a periodic on-off heat 
flux at the boundary  surface has been determined by 2 
Glass et al. [19] by employing a version of Duhamel 's  
theorem extended to hyperbolic heat conduction. 

Let us assume that the heat flux density at x = 0 is 
given by the following pulse function q~(t') given by 4 

cO(t-) 1 --2 ( ~ 2 )  = ~t e . (43) 

As a consequence of equation (43), function ~k(t') 

0 5 10 15 20 
Fig. 3. Plot of ~b vs E, obtained by employing equation (43). 

........ X ' = 0  

2.5 --~=2 

T 
1.5 

1 

o.~ / ~  ~ - " - - - ~ - ~ -  

0 T 
0 5 10 1'5 20 

Fig. 4. Plots of ~ vs/-at different positions and for ~ = lO, 
obtained by employing equations (42) and (43). 

reaches its maximum for /-= 2. On account of the 
considerations reported at the beginning of this 
section, a heat pulse expressed through equation (43) 
is expected to give rise to negative entropy production 
rates i fz  > tp, i.e. if~ > 1. A plot of  the function 4J(t') 
given by equation (43) is reported in Fig. 3. 

By employing equations (39), (40) and (42), both 
the dimensionless temperature 7 ~ and the dimen- 
sionless entropy production rate # can be evaluated. 
In Fig. 4, the dimensionless temperature 7 ~ vs /- is 
reported for ~ = 10 at positions X = 0, ~z = 1, ~z = 2 
and ~z = 3. Figure 4 shows that, at different positions, 
the thermal signals are delayed due to the finite speed 
of propagation. In Fig. 5, the dimensionless entropy 
production rate 6" vs / - i s  reported for r = 10 at pos- 
itions ~z = 0, ~ = 1, ~z = 2 and x = 3. As expected, # 
can be negative, so that this value of ~ is incompatible 

I - . - - - - -Y=1  . . . .  ~r=2 I ~  

0 5 10 15 20 
Fig. 5. Plots of i~ vs/-at different positions and for ~ = 10, 

obtained by employing equations (39), (40) and (43). 
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T ;'"i "/'::i ................ -7. .... 

5 10 15 20 

Fig. 6. Plots of ~r vs i-at different positions and for ~ = 1, 
obtained by employing equations (42) and (43) ; the dashed 

line corresponds to ~ = 0 (parabolic case) and 8 = 0. 

with  the local equi l ibr ium hypothesis.  In Fig. 6, /~ vs 
/" is repor ted for ~ = 1 at  posi t ions $ = 0, ~ = 1, ~ = 2 
and  ~ = 3. Fo r  the same value of  ~ and  at the same 
posit ions,  the dimensionless en t ropy  p roduc t ion  rate 
is reported in Fig. 7. The  value ~ = 1 is expected to be 
the highest  value of  ~ which yields a positive definite 
en t ropy  p roduc t ion  rate. Indeed,  Fig. 7 shows that ,  in 
this case, the en t ropy  p roduc t ion  rate does no t  present  
negative values, so tha t  it is conceivable to assume the 
validity of  the local equi l ibr ium scheme. Moreover ,  
Fig. 6 shows tha t  the t ime-var ia t ion of  the dimen- 
sionless tempera ture  at  x = 0 for ~ = 1 is different 
f rom tha t  for r = 0, i.e. for the case of  parabol ic  heat  
conduct ion.  In part icular ,  an  analysis of  the results 
repor ted in Fig. 6 shows tha t  the t empera ture  differ- 
ence at  ~ = 0 between the cases r = 1 and  ~ = 0 can 
be greater  t han  0.37 Q(cttp)]/Z/k. For  instance, for a 
mater ial  with  k = 1 W m  -]  K - l  and  ~ = 10 -5 m 2 s -] ,  
a heat  flux pulse with Q = 1 W cm -2 and  tp = 10 -1 s 
could yield a t empera ture  difference greater  than  3.7 
K. Moreover ,  for this material ,  the p ropaga t ion  speed 
of  thermal  waves would be 1 cm s -  J in the case r = 1, 
while it would be infinite in the case ~ = 0. These 
circumstances poin t  ou t  the existence of  a domain  
where hyperbolic  heat  conduc t ion  is compat ib le  with  
the local equi l ibr ium hypothesis  and  predicts tem- 
pera ture  dis t r ibut ions which are definitely different 
f rom those predicted by parabol ic  heat  conduct ion.  

, - 7 :  
0.8 

~ o.et 
0.4 ...... ~r=l 

0.2 ............. £=2 

0 5 1'0 1'5 20 t 

Fig. 7. Plots of 8 vs /-at different positions and for ~ = 1, 
obtained by employing equations (39), (40) and (43); the 
dashed line corresponds to ~ = 0 (parabolic case) and $ = 0. 

C O N C L U S I O N S  

The compat ibi l i ty  of  hyperbolic  heat  conduc t ion  
with the hypothesis  of  local equi l ibr ium has been 
investigated. It has  been pointed out  tha t  C a t t a n e o -  
Vernot te ' s  equa t ion  is compat ib le  with  the local equi- 
l ibrium scheme if the en t ropy  p roduc t ion  rate per  uni t  
volume is non-negat ive  at  every po in t  and  at every 
ins tant  of  time. Two problems of  thermal  wave propa-  
gat ion have been examined : a solid slab which under-  
goes a sudden tempera ture  change at  its bounda ry  ; a 
semi-infinite solid with  a t ime-varying bounda ry  heat  
flux. In the first problem,  the tempera ture  rise in the 
inter ior  of  the slab can  be greater  than  tha t  prescribed 
at the boundary .  The  evaluat ion of  the en t ropy  pro- 
duct ion  rate per  uni t  volume, a, has  revealed tha t  the 
excessive tempera ture  rise within the slab is 
accompanied  by negative values of  tr. Therefore,  no  
violat ion of  the second law occurs, because the local 
equi l ibr ium scheme does not  ho ld  and  the tempera ture  
field c a n n o t  be interpreted in the usual  ther- 
modynamic  sense. The  analysis of  the second prob lem 
has shown that ,  if the prescribed heat  flux at  the 
bounda ry  of  the semi-infinite solid behaves as a pulse 
which decays more  rapidly than  e -t/T, then tr presents 
negative values. In this case, the local equi l ibr ium 
scheme is no t  applicable. On  the other  hand ,  if the 
bounda ry  heat  flux decay is no t  steeper t han  e -'/~, a is 
non-negat ive  at  every poin t  and  at every ins tant  of  
time. In this case, the local equi l ibr ium scheme can be 
applied even if the predicted tempera ture  field can 
be considerably different f rom tha t  predicted by 
Four ier ' s  heat  conduct ion.  
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APPENDIX A 

Let us find solutions of equations (26) and (28) in the form 

8(~, 7) = a(n) cos(tiC). (A1) 

By substituting equation (A1) in equation (28), one obtains 
the eigenvalues 

ft. =(2n+l)Tr,  n = 0, 1,2 . . . .  (A2) 

while, as a consequence of equations (26) and (A2), function 
a(q) must fulfil the differential equation 

d2a da 
A - -  + + fl2,a = 0. (A3) 

dq 2 

For  every value of  n, the general solution of equation (A3) 
can be expressed as 

a.(t/) = b.e r." + c.e¢" (A4) 

where the coefficients ~,, and 6, are given by 

1 
7, = - ~ (1 - x /1-4f lZA) (A5) 

1 (1 + ~ ) .  (A6) &=-~ 

Therefore, the dimensionless temperature distribution 8(~, r/) 
can be expressed as 

~(~,n) = ~ (b,C" +c,e~"~)cos(fl,~) • (A7) 
n=0 

By substituting equation (A7) into equation (27), one obtains 

(b, + c,) cos(fl,~) = 1 (A8) 

(b.),. +c .6 . )  cos(fl.~) = 0. (A9) 
n=0 

On account of  equation (A2) and of  the orthogonality 
relation 

cos((2m+ 1)n~) cos((2n + l ) n 0  d~ = 0 / 2 ,  m = n 
j -  1/2 0, m :~ n 

(A10) 

equations (A8) and (A9) can be employed to obtain the 
constants b, and c,, namely 

46, 
b, = (-- 1 ) " - -  (A11) 

fl.(6.-r.) 

c. = ( -  1) "+1 4~,. (A12) fl.(6.-r.)" 

It can be easily checked that the dimensionless temperature 
field is a continuous function of  the parameter A, even for 
the values of  A such that the right hand sides of  equations 
(A11) and (A12) become singular. 

APPENDIX B 

Equations (35)-(37) can be solved by the Laplace trans- 
form method. The Laplace transform of  q(x, t) is given by 

#(x,p) = foe-e'q(x, t)dt. (B1) 

As a consequence of  equation (36) and of  the properties of 
Laplace transforms (see for instance Churchill ref. [20]), 
equations (35) and (37) can be rewritten as 

d2# 
- -  = (p + W2)c] (B2) 
dx 2 

q(0,p) = Q/~(p). (B3) 

The solution of  equations (B2) and (B3) which is bounded 
for x ~ + 0o can be expressed as 

¢(x,p) =Qff(p)ff(x,p) (B4) 

where ff(x,p) is given by 

9(x, p) = e- x ~ / ' f i .  (B5) 

On account of the convolution property of  inverse Laplace 
transforms [20], equation (B4) yields 

fo q(x, t) = Q F( t -  t')g(x, t') dt'. (B6) 

Equation (B5) can be rewritten as 

e - x ~ / ~  / - - d  
~(x,p) = - , /~ , ; -  (B7) 

so that 
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d - 1 f e - x ~ / f i ~  
(.8) 

The inverse Laplace transform which appears in equation 
(B8) is given by [21] 

,,,~<#:,_l ~ e - X ~ l ' , l ~  e - ' iO0 "r 1 ~ ~ j=~_U(t_x~)io(~z t~_~) 

(B9) 

By employing equations (B8)-(B9) and the properties of 
modified Bessel functions [22], one obtains 

By substituting equation (B10) in equation (B6), the heat 
flux density can be expressed as 

q(x, t ) =  QU(t-x~) 

I x ' e "m')F(t--t')l,(1 


